最近読んだ論文

 

226. CNOサイクルをニュートリノで初観測

"Experimental evidence of neutrinos produced in the CNO fusion cycle in the Sun"
Borexino共同研究グループ, Nature, 587, 577-582 (2020).

恒星の内部ではさまざまな核融合が起こっており,膨大なエネルギーを生み出している.核反応断面積などに関しては地上での実験でかなりのことがわかっており,恒星内部の推定される環境などを加味し各種の研究が行われた結果,陽子(プロトン,p)同士が融合しながら主にヘリウムを生み出すppチェイン(陽子-陽子連鎖反応)と,炭素(C),窒素(N),酸素(O)が触媒的にかかわりながら陽子からヘリウムを生み出すCNOサイクル(※途中で生じる15Oはすぐ崩壊し15Nになりこれが反応を進めるので,CNサイクルと呼ばれることもある)が中心となってエネルギーが発生していることがわかっている.
CNOサイクルは反応速度的に非常に早く多くのエネルギーを発生させることができるのだが,重い核(=正電荷の大きい核)にさらに陽子を打ち込む必要があり,これを起こすためにはより高い温度が必要とされる.このため太陽質量程度以下の軽い恒星ではppチェインがエネルギーの主原因であり(とはいえ多少はCNOサイクルも回る),太陽の1.3倍以上程度の重くて熱い恒星ではCNOサイクルが主要なエネルギー源(当然ppチェインも起こっている)であると推定されている.

※なお,宇宙創成後の第一世代の恒星内部においては,CやNなどの重元素(この手の分野では,水素とヘリウム以外の原子は全て重元素,または金属元素と呼ばれる)が存在しなかったため,大きな恒星であってもppチェインがメインだったと考えられている.

さて,うちらのご近所にある太陽の話である.
太陽の内部でどんなことが起こっているのかは遥か古代からの興味の対象であり,現在でもさまざまな検討が行われている.内部の精密な組成や構造は,今後の太陽の活動のみならず,宇宙の過去の歴史を解明するうえでも非常に重要な情報となり得る.ところが,太陽核部分を直接観測することは非常に難しい.光学的な観測では,コアの外側にある放射層がすべてのエネルギーを一度引き受けたあとで光として発しているため,内部の情報は失われてしまう.また,太陽表層部分の化学組成は分光的な手法で解明できるものの,これまた放射層のあたりを境にその上下で混合が起こりにくく,その結果コアの化学組成と表層(対流層)とで化学組成が異なることが予想されている.
またここ10〜20年の間に,理論計算の発展やそれをもとにした研究から,太陽内部での重元素の比率は従来考えられていたよりも低いのではないか?と言った説が出てきており,現在でも論争が続いている(例えば参考として,https://www2.nao.ac.jp/~takedayi/ss_phys/databank/SolarComposition_Takeda.pdf
実はこの重元素比率,結構いろんなところに影響を与えるパラメータである.上記の参考資料を見ていただくといくつか書いてあるのだが,重元素の推定量が変わってしまうと,これまでの理論ではよい一致を示していたいくつものモデルがズレてきて見直しが必要になるなど,意外に影響が大きい.

そんなわけで,太陽において重元素(と言っても,CNOFあたりまでの原子がほとんど)がどの程度含まれているのかは非常に興味を持たれている対象なのだが,上で述べた通りそれを光学的に直接観測することは不可能である.そんな中,近年急速に注目を集めているのがニュートリノによる観測だ.
ニュートリノは各種の核反応に伴って放出され,物体との相互作用確率が非常に低いことからほとんどどんなものも透過して広がっていく.核反応が大量に起こっている太陽核はまさにこのニュートリノの強烈な発生源であることから,ニュートリノを用いれば太陽核からの情報を得られる,というのは古くは1940年代には提唱されているアイディアである.しかしながらニュートリノはその反応しにくさから検出が難しく,実際に太陽からのニュートリノを検出したのはそれから20年以上経過したDavisらによるHomestake実験(1969年頃から観測開始)を待つこととなる.その後もカミオカンデ/スーパーカミオカンデを含むいくつもの大型観測装置がニュートリノの検出に用いられているのはご存じの通りだろう.

今回論文として報告されたのは,伊・米・独・仏・波・露による共同観測実験Borexinoにより,太陽内部でわずかに起こっているCNOサイクル由来のニュートリノの観測に成功した,というものである.
Borexinoはイタリアの山中に半径4.25 mの球形の検出器を建造し,それを用いて太陽ニュートリノ(等)を検出しよう,という実験である.なお,オフィシャルページでは各種の写真が公開されており,模型や建造中の様子なども見て取れる.球体内面にはカミオカンデなどと同じように光電子増倍管が埋め込まれている(2212本存在するが,経年劣化などで徐々に減っていく).この球体の内部を有機溶媒で満たし,内部でニュートリノが偶然物質と衝突した際に発せられる光のエネルギーや方向などを検出,それによりどんなエネルギーの粒子線がどの方向からどの程度の頻度でやってくるのかを測定する.

さてこの手の装置,作ればすぐ測れる,というものではないのが難しいところだ.今回の論文も,そのほとんどは「どんなノイズ源があって,その影響をどう排除したか」が書かれている.CNOサイクルで発生するニュートリノは,おもに1500 keV以下のエネルギー領域に分布している.その分布は,低エネルギー側からなだらかかつ単調に発生頻度が減る,という分布のようだ.
ではこの分布にかぶってくるものは主に何かというと,宇宙から降り注ぐミューオンが炭素に衝突して11Cを生み,その崩壊がバックグラウンドになるというもの(これは,1500keVあたりを中心としたピーク構造を作る)と,恒星内部で起こるpep反応(ppチェインの亜種としてその1/400程度,ごくまれに起こる反応で,電子1つと陽子2つが融合し重水素となる.こちらは1200 keVぐらいまでは平坦で,それ以上のエネルギーで減少し1400 keVあたりでほぼゼロになる),そして地上の不安定核から生じる210Biの崩壊によるもの(低エネルギーから単調に減少するという,CNOサイクル由来のニュートリノと似たエネルギー依存を示す)である.
まず11に関しては,通常の炭素にミューオンが当たって11Cが生じる際に,同時に中性子線や陽電子が生じる.このため,これら3事象が同時に発生しているようなデータを除くことで影響を低減できる.pep反応に関しては,反応頻度がppチェインに比例するため,太陽からの通常のニュートリノをもとにその影響を見積もることが可能である.210Biに関しては,210Biが崩壊した結果の210Poがより長い半減期でα線を出して崩壊するので,その量を調べることで210Biの影響を見積もることができる.
他にも,外部からの影響を減らすためにBorexinoの球体全体がもう一重の球体に収まり,その間が水で満たされているとか,壁付近で起きた事象は外部からの影響の可能性があるから除外するとか,細かなノイズ対策が幾重にも積み重ねられた結果,ごくわずかなCNOサイクル由来のニュートリノを自信をもって「検出した」と言えるようになったようである.
ちなみに検出できたCNOサイクル由来のイベントの数は一日あたりおよそ7.2カウント(+3.0,-1.7)/溶液100トン(なお,Borexinoの全容量はおよそ280トンである).今回の論文に用いたデータの観測期間は4年弱,観測日数で1072にも及ぶ(※途中で各種の作業が行われた期間などもあるため,4年弱でこの日数になっている).ここから見積もられるCNOサイクル由来のニュートリノは,地球において1平方cmあたりで毎秒およそ7.0(+3.0 -2.0)×108個になるらしい.

現状だと測定精度もあるためまだ太陽内部の重原子の量について制限を付けられるほどにはなっていないが,これまで見えなかった太陽の中心を見るための手段の進歩,ということで面白い報告であった.(2020.11.28)

 

225. ようやく実現した室温超伝導

"Room temperature superconductivity in a carbonaceous sulfur hydride"
E. Snider et al., Nature, 586, 373-377 (2020).

超伝導が発見されて以来,常温での超伝導を探し求める研究が続いてきた.転移温度の上昇において一つ目の大きな発見は1985年(論文は1986年)の高温超伝導体の発見である.これにより超伝導転移温度は液体窒素温度を超えるまでに至った.しかしながら高温超電導に関してはその発現機構に謎も多く,どうすれば転移温度を現状以上に引き上げられるのかという設計指針も未完成である.
二つ目の大きな進展があったのは2015年だ.この年に発表されたのは「H2Sと水素に超高圧をかけると,200 Kを超える高温で超電導を示す」という実験結果である.驚くべきことに,この超伝導は古典的なBCS理論で説明できる昔ながらの超伝導であると考えられており,その発現機構はとてもよく理解されているものであった.BCS超伝導では,電子が格子振動を介して結びつくことによりボソン化,Bose-Einstein凝縮を起こすことで超伝導が実現する.このとき転移温度に大きな影響を与えるのが格子振動と電子の運動との結合であり,軽い原子ほど結合が強い,つまり転移温度が高いことがわかっている.2015年に報告された実験では,この「軽い原子ほど,格子振動と電子との結びつきが強い」というものを最大限に活かすためか上の水素を含む物質を超高圧下で発生させ,それが(理論の予想通りに)高い転移温度を示すことを知らしめたわけだ.
行き詰っていた超伝導界隈はこの発見に色めき立ち,高圧下で過剰の水素を含む物質の合成とそこでの超伝導の探索が広く行われることとなる.2019年にはLaH10で250〜260 Kと,冷凍庫程度の温度で超伝導を示す物質が報告されている.

さて,今回の研究である.今回の研究もこの「水素を過剰に含む物質を高圧下で作り,そこでの超伝導を狙う」という方向での研究であるが,炭素原子(系中では,後述するように水素と結合しメタンになっていると考えられる)を入れた点がこれまでの研究と異なっている.一応著者らは,「メタンはH2Sと同じぐらいのサイズだから置換したような形で入るのでは」というようなことを書いてもいるが,個人的には後付けの理由のような気もしないではない.なんとなくもっと単純に「硫黄より軽い炭素も混ぜてみようぜ!」ぐらいのノリでいろいろ試した結果のような……(個人の感想です)
何はともあれその結果,ついに最高で288 K=約15 ℃という常温での超伝導転移を確認できた,というのが今回の論文である.

サンプルの調整としては,まず,固体の硫黄と炭素をゴリゴリとボールミリングにより微細化&混合し,それを圧力セルに入れる.そこに圧力媒体兼水素化物合成のための反応物として水素ガスを高圧で導入し超高圧を印可.そこに532 nmのグリーンレーザーを照射すると硫黄が開裂しラジカルを生じ,水素と反応することで水素化物を生じる.さらに炭素にも水素が付加し,結果としてメタンと硫化水素と水素を寄せ集めて圧縮したような水素リッチな固体が生成する.
生成した物質に関してはラマン分光によりその結合に関する情報をとっており,4 GPaの低圧状態での測定ではH-S-HやH-C-Hの変角振動,C-Hの伸縮振動,H2の振動などを観測している.ここから著者らは,この低圧下では硫化水素分子とメタン分子と水素分子が分子のまま集まった,ファンデルワールス結晶的なものができているのではないかと推測している.圧力が15 GPaあたりにまで上がると,H2S分子が作るケージ中に水素が捕らえられたような,既知のホスト-ゲスト的な結晶の生成が確認された.分光の結果から,この圧力での転移はH2S分子の向きが整列する転移なのではないかと推測している.このとき同時にメタン分子の振動モードも分裂が確認されており,H2Sと協調的にケージを構築していることが示唆される(つまり,H2HとCH4が配列して籠状構造を作り,その中に多くの水素分子が取り込まれたような構造).37 GPaで再び何らかの転移が起こっているが,化学的には分子は分解していないことが示唆されている.さらに60 GPaを超えたあたりで系が金属化し,これ以上の分光測定が困難となった.

この物質の電気的な特性であるが,150 GPa以上あたりで超伝導(転移温度=150 Kぐらい)を示し,圧力の増加とともに超伝導転移温度は単調に増加する.圧力が220 GPa(このときの転移温度は194 Kぐらい)を超えたあたりから転移温度の増加が著しくなり,今回の測定で用いた最高圧力267 GPaで転移温度は287.7 K程度となった.電気抵抗の温度依存は非常にきれいな,急峻な抵抗減少を示しており,温度を少し下げただけでほぼ垂直に抵抗がゼロに向かっている.
この抵抗の減少が超伝導転移であることの証明として,磁場依存も測定している.磁場を印可すると転移温度は顕著に低温側にズレていき,例えばゼロ磁場時におよそ288 Kであった転移温度が,磁場を9 Tまで上げていくと265 K付近にまで低下している.磁場による転移温度の低下は超伝導でよく見られる現象であり,低下幅も既知の理論と矛盾はしない.
また,磁化率も測定されており,抵抗の急減に伴い磁化率が非常に大きな負の値を示すことが確認されている.これはいわゆるマイスナー効果であり,この転移が超伝導転移であることの証拠の一つとなる.

まあそんなわけで,物性科学の夢の一つが(超高圧下とは言え)ようやく実現した,というところか.今回の試料に関してはその具体的な構造や組成などもまだ明らかになっておらず,組成の最適化もされてはいない.今後,共存させる炭素(メタン)の量を最適化するなどすれば,さらなる転移温度の向上や,必要な圧力などが低減される可能性もある.
※とはいえ,常圧下にはならないだろうが……(2020.10.15)

 

224. 空気の上に浮かせた重い液体中での下向きの浮力

Floating under a levitating liquid
B. Apffel, F. Novkoski, A. Eddi and E. Fort, Nature, 585, 48-52 (2020).

流体の運動は,それを表す基礎方程式から原理的には(極端な条件下を除いて)解くことが可能ではある.ただその式は(一部の単純な条件下を除いて)解析的な解をもたず,しかも場合によっては計算量も非常に大きくなることからさまざまな計算法・近似方が研究されている.特に粘性が大きかったり圧縮が可能な流体がさまざまな境界条件のもとでどのような運動をするのかに関してはまだまだ未発見の現象が隠れており,現在でもいろいろと面白い現象が見つかっている.今回はそんな,流体での面白い現象の紹介である.

さて,水などの重い流体と,油(であるとか,空気であるとか)のような軽い流体が同じ容器の中にある場合を考えよう.この場合,もちろん最安定となるのは重い流体が下に来て,軽い流体が上にある場合である.当然ながら大きな容器に水と空気を入れると,最終的には水が下に来て上が空気で満たされる.例外としては例えば細管であれば毛管力によって水が上に来ることもあるが,まあ普通のサイズでは水が下に来る.
ところが,(私自身は寡聞にして知らなかったのだが)容器中で重い流体が上に来ている場合でも,縦方向の振動を与えることでその状態を維持できる,ということが1970年やそれ以前の段階で発見されているらしい(例えば1970年のPRLの論文).
通常,軽い流体(例えば空気)の上に重い流体(例えば水や油)が乗っていると,摂動(=小さな揺れや傾き)によりその界面の一部が下に落ち始める.そのような変形は,エネルギー的にはさらに拡大した方が(=重いものがより下に落ちていった方が)安定であり,そのため小さな摂動が大きな変形へと拡大,最終的には上に乗っていた液体が下に落下する.ところがこのような二相系が入った容器全体を上下にある振動数で軽くゆする,例えばサンプル瓶に油と空気を入れ,全体を縦方向に軽くゆすると,この振動により界面に発生した「波」の運動が摂動により生じた「液体の落ち始めの動き」を破壊することになる.要するに,上に乗った液体の一部が垂れ下がり始めたところで,液体-気体の界面に生じた波が上向きの運動を引き起こせば,そのような垂れ下がりは引っ込んでしまうわけだ.これにより,「軽いものの上に,重い液体をのせた」状態が安定化され,例えば「空気の上に油が浮いている」という面白い状況を作り出すことが可能となる.
もちろんこの際に振動はどんな振動数でも良いわけではないし(うまいこと表面波を共鳴的に励起できる振動数の必要がある),容器の広さが広くなりすぎるとこの効果よりもどこかで液体が落下する方が強くなってしまうので崩落する.大きな液面を安定化するには,それなりに大きな粘性をもった流体を使う必要がある.

今回の論文で報告されているのは,かなり大きなサイズでの液体の空中浮上と,その下部界面における「逆向きの浮力」(としてふるまう力)である.
著者らが用いた装置は,ガラス製の液体を入れられる容器全体を縦に振動させられるものである.容量的には液体を500 mlほど入れて実験を行っている.てっきりもっと小さいサイズでしか浮かせられないのかと思いきや,なかなかの大容量である.
この容器に,粘性の高い液体としてシリコンオイル(またはグリセロール.どちらでも同じ結果になる)を入れ,振動させる.そして容器の底に向け針を突っ込み,容器の底=液体の下に空気を注入していく.すると液体が見事に空気の上に浮く,というわけだ.もちろん実際には,あらかじめどのような振動数で共鳴するのかをちゃんと求めてやり,その振動数で容器を揺らしておく必要がある(今回の場合,およそ100 Hz程度).そのような条件で浮いている液体の下部界面(下の空気と接している部分)をよく見ると,レイリー・テイラー不安定性により重い流体である水が垂れ下がって落ちようとしても,界面に生じている振動により押し戻され結局浮いた状態が維持されていることが見て取れる.とまあ,グダグダ書くよりも,動画を見てもらった方が早いだろう.

下に空気を注入されても浮いているシリコンオイル
界面の拡大動画
二段の液相を浮かせることもできる

動画で上にあるのが空気,その下がシリコンオイルで,シリコンオイルのさらに下に空気を注入すると,液体のシリコンオイルが宙に浮いた状態を維持する.下部界面をよく見ると,振動により励起された表面波が界面を激しく揺さぶっており,小さな沈降が大きな落下に成長するのを阻害している.

さて,この浮遊した液体で報告された面白い現象が,逆向きの浮力である.例えばこの浮いている液体の上側(ピッタリ半分,というわけではないが)に気泡が入ると,当然ながら気泡は上向きに進む(次の動画の前半部分).ところが液体の下側の方に気泡が生じると,まるで浮力が逆向きに働くかのように,気泡は下側に向けて移動する(動画の中盤).そして容器をゆすっている振動数をうまくコントロールすると,気泡を自在に上に進めたり(=通常の浮力),逆向きに進めたり,ちょうど制止させたりできるのだ.

気泡にはたらく浮力の動画

一応計算としては,単純な気泡にはたらく浮力の式であるF=ρVg(ρは流体の密度,Vは気泡の体積,gは重力)のVとgとして,容器を振動させることでの実効的な重力(とみなせる成分)として単振動する値(g-Aω2cos(ωt))を,そして気泡の体積として圧力により圧縮される効果(ただし,その圧力を生む実効的な重力が前項のように振動する)を入れ計算すると,このような位置(および振動数や振幅)に依存した浮力が導かれ,下方では下向きの浮力,上方では通常通り上向きの浮力が働くことが算出できる(詳しくはSupporting online materialの最初のあたりを参照のこと). この結果,浮遊している液体の状面では普通に浮き,下面ではまるで重力が反転したかのように逆向きに「浮いた」状態が実現できる(次の動画の後半部分).

界面に浮くフロート

とまあ,何に使えるかは考えないとして,流体の示す面白い現象であった.(2020.9.7)

 

223. 硫黄で見つかった液-液相転移と液-液臨界点

"Liquid-liquid transition and critical point in sulfur"
L. Henry, M. Mezouar, G. Garbarino, D. Sifré, G. Weck and F. Datchi, Nature, 584, 382-386 (2020).

素朴な描像では,液体は無秩序に動き回る粒子の集合体であり,その構造は完全なランダムだと考えられる.しかしながら実際の液体,特に分子性物質の液体に関しては,分子間での相互作用が特定の方向で強い,などの特徴をもつため,液体状態においても微視的にはある程度の構造を形作っていることがある.例えば水分子は分子間に非常に強い水素結合が働くため,液体中においてもいわゆるクラスター構造などと言われるような構造をとっていることが知られている(といっても,怪しい水商売の方々の解説にあるようなかっちりした構造ではなく,動的に分離-会合を繰り返す一時的な構造である).
この「液体の構造」に関し,近年注目されている仮説が「水の二相共存モデル」である(このコーナーでも何度か取り上げている).水は通常の液体とは異なる非常に特異な性質をいくつも示しており,それがいったい何によって生じているのか,は長い歴史を持つ研究課題である.その中から浮かび上がってきた一つの仮説が「液体の水には実は2種類の構造があり,常温・常圧ではそれらが微視的には相分離した混合溶液となっている」という二相共存モデルだ.この仮説では,水には「1分子あたり4つの水素結合をもつ,氷に近い隙間の多い構造」をとっている「低密度水」と,「水素結合が一部崩れ1分子あたり平均3つ程度の水素結合しかなく,もっとぎゅっと詰まっている構造」の「高密度水」とが存在し,温度によってそれらの比率が違う,としている.
この「二相共存モデル」に関しては,低温で急冷することで作られるアモルファス氷(アモルファスなので結晶性の氷とは異なり,いわば液体の構造をそのまま凍結した,と考えられる)と,それに圧力をかけることで得られるもう一つの「高密度なアモルファス氷」が存在すること(=微視的な構造の異なる「ランダムな」構造が2種類あること)が根拠となり,さまざまな実験が世界各地で行われている.
※その一方で,近年ではその「高密度アモルファス氷」の存在を否定するような研究も出ており,混迷を深めている.

そんな水の二相モデルであるが,なぜ研究が難しいのかといえば
(1)室温では温度が高すぎて,液体の二相の臨界点(液-液臨界点)を超えている
(2)かといって液-液臨界点は凍結温度以下のため,臨界点以下に下げようとすると結晶化してしまう(=液体ではなくなる)
という2つがあるからだ.
(1)を説明するために,まずは気液臨界点を考えてみよう.気体に圧力をかけていくと,どんどん圧縮され密度が高くなる.一方,(沸騰しないように十分圧力を上げながら)液体の温度をどんどん上げていくと,その密度はどんどん小さくなる.その結果,ある温度&圧力で,気体の密度と液体の密度が一致してしまう,ということが起こる.この点を「臨界点」と呼び,これ以上の温度や圧力ではもはや気体と液体は区別できず,連続的に変化する一つの相となってしまう.
これと同様の現象が液-液相転移でも起こると推測される.低密度液体相に圧力をかけていくと密度が増える.一方高密度液体相の温度を上げると,密度が下がる.この結果,ある温度&圧力で低密度液体相と高密度液体相とが区別できない点(液-液臨界点)が現れ,これを上回る温度&圧力では,二つの相を分けることはできなくなってしまうのだ.そして水の場合,この液-液臨界点の温度が非常に低温であり(200 Kを超えたあたりと考えられている),液体のまま到達できないことが問題を難しくしている.

水は液-液相転移を起こすんじゃないか,と予想されているものの実験が非常に難しい.そこで,水以外の物質においてこの「液-液相転移を探す」という研究がおこなわれており,液状Si,二酸化炭素,液状炭素などで異なる液体構造間での相転移を示唆する結果が得られている.特にリンに関してはSpring-8で詳細な実験が行われ,低圧側での分子状リン(分子状の白リンP4)の液体から,もっとネットワーク構造の発達した黒リンに近い構造の液体への転移が観察されている.ただ,これらの物質では液-液相転移は見られたものの,存在が予測されている液-液臨界点は観測できていない.それはこれらの系での液-液臨界点が,非常に高温であったり負圧であったり,準安定の過冷却状態以下の温度であったりと,実験が困難な条件となるためだ.
そんななか今回報告されたのは,硫黄での液-液相転移の発見と,測定しやすい温度-圧力域での液-液臨界点の初の観測である.

硫黄は,すでに液-液相転移が知られているリンと同様に,分子状とポリマー状の二つの構造をとることができる物質である.低温では通常硫黄原子が8個リング状に結合したS8分子が安定で,温度を上げていくとリング状の分子を保ったまま388 Kで溶融,その後432 Kでが開裂し単鎖のポリマーへと成長するλ転移を起こす.
今回著者らは硫黄を圧力セルに入れ密閉,さまざまな温度で圧力を印可していき(等温変化),その際に密度と構造にどのような変化が起こるのかを観測した.なお,一部の圧力においては,圧力を固定したまま温度を上げる等圧変化での測定も行っている.密度に関しては,当時慶応大だった片山芳則氏(そこから原研/Spring-8へ)が開発した,X線吸収量から密度を求める手法を用いている(X線の吸収は原子種とその量で決まるので,吸収量から通過した領域に存在した原子の量=密度がわかる).また同時にX線回折もモニタし,結晶化していないかどうかや,2体相関分布関数(二つの原子が,どのぐらいの間隔で存在しているか,の分布)を求めている.

さて実験結果であるが,まずはさまざまな温度で圧力を上げていった様子を見てみよう.550 Kで圧力を上げていくと,0.4 GPa前後の圧力で急に密度が増加する点が現れる.これは明らかに転移の表れであり,しかも転移の前後でX線に明確なピークが現れないことから,液-液転移であることが示唆され,硫黄における液-液相転移の初の実験結果となる.なおこのときの密度の増加はおよそ3%程度であった.
もう少し高い650 Kではさらに顕著な密度増加が0.7 GPaを超えたあたりで起こり,密度が5%近く上昇する.加圧による転移で密度の変化が最も大きかったのは750 Kでの測定で,そこでは0.8 GPaを少し超えたあたりで密度が一気に8%近くも上昇している.さらに温度を上げていくと,加圧による転移での密度の増加は単調に減少していき,1030 Kぐらいまではギリギリ確認できた相転移が,1035 Kを超えたあたりで確認できなくなっている(=加圧しても,密度が単調に増えるだけで急激な飛びが見られない).これは,理論的に予測されていた液-液臨界点(低密度液体相と高密度液体相の密度が等しくなり,両者の間で明確な転移が無くなってしまう臨界点)が1035 K,2.15 GPaあたりに存在することを示唆している.
さらに確認された液-液相転移の観察においては,加圧により低圧相(低密度相)中に高圧相(高密度相)が生じ,2相が共存しつつ,加圧とともに次第に高圧相が成長していく様子が確認されている.この「2相共存」は1次相転移に特有の現象であり,この相転移が2次相転移ではない事の何よりの証拠となっている.
※二つの安定相がある液-液相転移は,1次相転移だと考えられている.

この液液相転移では,どのようなことが起こっているのだろうか?著者らは,2体相関分布関数から「低圧相(低密度相)ではS8的なリング状の構造が主体であり,高圧相(高密度相)ではリングが切れ,よりポリマー的になっている」と述べている.ただ著者らが重ねて強調しているのが,このような構造変化を伴うものの,この転移は以前から知られているλ転移(リング状構造から鎖状構造への転移)とは熱力学的には別のものである,という点だ.例えばλ転移は加圧とともに転移温度が単調かつわずかに減少するが,今回見つかった転移は加圧とともに転移温度が上昇していくなど違いがある.
また,今回見つかった転移の様子は,気液臨界点と大きく異なる点も興味深い点である.気液平衡では,圧力の印可とともに密度の差は単調に減少するため,転移に伴う密度の変化は圧力の増加とともに単調に減少する.これに対し今回見つかった転移は,圧力を上げると最初はむしろ密度の変化幅が大きくなり,その後減少する,というものであった.このような挙動は分子動力学シミュレーションでも予測されていたらしいが,低温側で分子鎖の運動範囲の変化によるエントロピー項の寄与の大きさが効くらしい.

ともあれ,液液相転移にまた一つ,比較的実験しやすい対称が加わったのは喜ばしい.(2020.8.24)

 

222. 自由に動くアームをもつロボットとベイズ探索を用いた物質探索

"A mobile robotic chemist"
B. Burger et al., Nature, 583, 237-241 (2020).

触媒化学などでは,さまざまな助触媒等の添加物を加えることでその活性が大きく変化することが知られている.しかも複数の物質を加える場合,それらの添加物間にも相関が生じることもあり,Aを入れると活性が上がる,Bを入れても活性が上がる,しかしAとBを同時に加えると活性が下がる,など非常に複雑な応答を示すことも多い.このため高活性の反応条件を見つけ出すためには片っ端から組み合わせを試す,というのが有効なのではあるが,何せ人間の手数には限りがあり,短時間で大量の組み合わせを試すのは至難の業である.
液体同士の反応などの場合は,マイクロ流路チップなどに複数の薬剤をポンプで繋ぎ,プログラムしたポンプでそれらを適宜駆動することでさまざまな比率での混合・反応を短時間で試すことが可能となっている.しかし固体の粉末などを用いる実験ではそういった装置が組みにくく,学生やらバイトやらを総動員してしらみつぶしに物質探索を行う,などがボトルネックとなっていることも多い. (この辺は昔に高温超伝導体の物質探索が通った道でもある)

さて,ただひたすらに似たような作業を繰り返す場合,工業的にはロボットが多用されている.しかも近年の技術の進歩により,ロボットには非常に柔軟で高機能な腕を備えたものもあり,これを化学の分野に応用できれば無人で黙々と物質探索を行うことが可能なのではないだろうか?
今回紹介する論文は,そんな目論見で実験のオートメーション化を図り,さらに制御プログラムがベイズ探索を行うことで短時間で高効率な反応条件を見つけ出せることを実証した,という論文になる.ターゲットとしたのは光触媒による水の分解で,加える物質などを条件を変えながら,光照射により発生する水素の量をガスクロで定量している.

まずは使われた働き者のロボットはこいつである.休日なしでも文句も言わず,バッテリーにより1日に21.6時間ほど稼働する(それ以外の時間は充電ステーションで休憩)ナイスガイだ.上部に備えられた腕は7自由度でさまざまな動きが可能,14 kgまでのものを持て,80 cm強の距離まで伸ばすことが可能.さらに本体には最大で200 kgのものまで載せて移動することができる.細かいことを言うと上に載っている腕と下のベースは別々に販売されている2台のロボットなのだが,まあこの実験の範囲では一体となって稼働するので合わせて1台と思ってよい.
本体には作業場所のマップを入力してあり,レーザー測量と組み合わせて理想的には1 mm以内(実際に実験室で試しても10 mm以内),角度も2.5度以内という高い精度で位置をコントロールできる(ついでに言うと何なら暗闇の中でも稼働できるので,光に弱い化合物の合成にもうってつけだ).
この精度はたいていのことには問題ないのだが,小さなサンプル瓶の取り扱いにはやや問題がある.そこで各実験場所で補正用のキューブを使用している.ロボットが所定の場所(例えばサンプル管を取り出す,などの場所)に来ると,その場所には補正用の100x100x50 mmの黒い箱が固定してある.ロボットはアームでこの箱の周囲6点に触れアームの位置を再確認(補正)することで,位置精度±0.12 mm,角度精度±0.005度という非常に高精度な動きを可能としている.

このロボットもいろいろできるのだが,それだけで実験を行うことは難しい.著者らはこのロボットに加え,メトラーが販売している粉体ディスペンサーQuantos QS30(設定された量の粉末を吐出する)や,少量の液体を正確に送り込める蠕動ポンプ&出てきた液量を重さで測るための電子天秤も用いる.これらは例えばArduinoなどで制御され,メインのAIが設定した量の原料を適切に提供する.ロボットはサンプル瓶(が16個ぐらい入るケース)をもって移動,各種の物質をさまざまな比率で混合し,それを窒素ガス下で封入(さすがにこの装置だけは市販ではなく,特注で作ったらしい),振盪機に入れよく振り交ぜながら光照射,その後ガスクロのところへ持っていきセットすると制御されたガスクロが水素の発生量を定量する.得られたデータは全体を統括するAIに送られ,どのような比率で何を混ぜるのが効果的なのかをベイズ探索により推測し,より高効率な組み合わせができると思われる分量を設定する.そしてロボは(充電時間以外は)サボりもせず黙々と実験を続けるわけだ.なお,実際の全体像各種装置のところを見てもらうとわかる通り,ロボの移動を考えかなりスペースをとった実験室を作っている.

それではまずは,ロボが黙々と働く様子を見ていただこう.

文句も言わず黙々と働くロボ
夜も暗闇の中で働く
キャリブレート後,粉を入れてもらったり液体を入れてもらったり振盪したりガスクロを使いこなすロボ(ボタンも押すよ!)
不活性ガス雰囲気で蓋をかしめる特注装置

なんというブラック職場.それでも文句も言わず黙々と働くロボ,実に良いですね!

この実験で著者らは,光による水の分解触媒としてP10(ポリマーの一種),正孔捕捉剤として事前の実験で良さそうだったシステインを用いた.触媒特性に影響を与える(可能性がある)ものとしては,過去の光分解の報告例で効果があったとされるものを中心に,(1)色素(これが強く光を吸収し,触媒にエネルギーを渡すことで効率が上がる.今回の実験では3種の色素分子を検討),(2)pH(NaOHを加える量によりpHをコントロール),(3)イオン強度(NaClを加えることでイオン強度をコントロール),(4)界面活性剤(触媒と溶液の接触が良くなり効率が良くなる可能性.イオン性と非イオン性の2種を検討),(5)水素結合しやすい分子(正孔捕捉剤や色素を触媒ポリマーに結び付ける可能性.Na2Si2O5を使用),という5つのパラメータを振っている.
これらのパラメータは全体の液量が5mlに制限されている点,および加える際の刻み幅(ポンプや粉体ディスペンサーの最小幅)を考えると,組み合わせとしては約1憶パターンがあり得るため,全体を探索するのは不可能である.そこで前述の通り,ベイズ探索を組み合わせることでできるだけ少ない試行回数で最適(に近い)条件を探させた.サロゲートモデルの構築とかの話も出ているが,さすがにそこまでは追えず.

では,どんな流れでロボ(と,裏で配合を考えているAI)がより良い比率にたどり着いたのかを追ってみよう.
まずスタートはランダムな配合比率からスタートである.つまり,光触媒の量や正孔補足剤の量自体もランダムだ(当然,活性は非常に低い).最初の22実験(1実験で,多分16サンプルぐらい作って測っている)で,AIはようやく「P10(光触媒)とシステイン(正孔捕捉剤)が一番のキーファクターらしい」と気づく.続いてAIはNaClを加えてイオン強度を上げるとやや活性が上がることを見出す.さらに100実験め(実時間で2日ごろ)までには,3種の色素や2種の界面活性剤がいずれも効果が無いことを発見.以降はこれらをほとんど加えない組み合わせ中心に探索が進む.これと並行し,30実験めあたりでAIはNa2Si2O5の使用が活性を上げることを見出す.一方でNaClはそこまで大きな効果を表さないことに気づく.こうして最後の688実験が終了した8日後には,P10とシステインにNa2Si2O5とNaOHを加えることで,単にP10とシステインだけの場合に比べ6倍も水素を発生できる組み合わせに行きついた(そしてこの触媒に対しては,色素と界面活性剤とNaClは要らないことも判明した).
なお著者らの見積もりによれば,同じぐらいの実験を人間が全部手動でやろうとすると数百日ぐらいはかかる,とのことである. (実際には人間もある程度自動化した装置を使うので,ここまではかからないとは思うが)

というわけで,ロボ(と適切な探索アルゴリズム)を組み合わせると,今以上にいろいろなもので大量探索が行えるよ,という論文であった.充電以外は休まず黙々と働いてくれて実にうらやましい限りである.(2020.7.10)

 

221. 壊れにくい超撥水表面の作成法

"Design of robust superhydrophobic surfaces"
D. Wang et al., Nature, 582, 55-59 (2020).

非常に水をよくはじく超撥水の表面は,ほんの少しの傾きがあれば濡れても水分が全て玉状となって流れ落ちるため,例えば汚れにくい表面や曇らない鏡,ドロッとした食品系のペーストがくっつかない蓋などとして実用化がされている.こういった(水系の)液体がくっつかない表面加工はこのほかにも,粘性の高い水溶液や懸濁液を低抵抗で流せるパイプ用の内面加工など,まだまだ数多くの応用が提案されている材料である.
このような超撥水の表面を作るには,どうすればよいだろうか?撥水性/親水性は,基本的には表面と水分子との相互作用によって決まる.もし表面が水分子とほとんど相互作用しない物質だった場合,水分子はそれらの表面にくっつくよりも,他の水分子に囲まれて自由に水素結合を作っていた方がエネルギー(正しく言えば,エネルギー,またはエンタルピーから,エントロピーと温度の積を引いた自由エネルギー)が低くなる.逆に言うと,水は撥水性の物質と接している接触面積に比例しただけエネルギーが上がる(界面エネルギー).
このため水はできるだけそれらの物質と接触しないように変形し,接触面積が小さくなるようになる.つまり撥水表面での水玉のような構造となる.通常取り扱える物質の中で,水との相互作用が非常に小さいのはフッ素樹脂である.これは通常のポリマー同様の炭素鎖の表面を,数多くのフッ素原子で修飾したものであるが,フッ素原子はその小ささと大きな核電荷ゆえに原子表面の電荷が動きにくく,分極率が極めて小さい.このため他の原子との相互作用が非常に弱い(テフロンが低摩擦な理由の一つでもある).
しかしながら,フッ素樹脂で表面をコートしただけでは,高い撥水性は持つものの「超撥水」(接触角が150度以上)までは行きつかない.超撥水を実現するには,物体の表面にナノレベルの凹凸を作る必要がある.物体の表面に非常に細かい凹凸があると,水と接した際の接触面積が増える(何せ表面に猛烈に細かい凹凸があるので,見た目以上に実際に接している面積が大きい).このため撥水性の物質の表面にナノレベルの凹凸を作ると,さらに格段に撥水性が上がり,超撥水の表面を作り出すことができる.

さて,この「超撥水には不可欠な,ナノレベルの凹凸」が問題である.物体の表面というのは,しばしば他の何かにぶつかったりこすれたりする部分にあたる.そこにナノレベルといういかにも壊れやすいサイズの凹凸が露出しているわけだから,超撥水の表面というのは何かとこすれるだけで容易に構造が破壊され,超撥水を示さなくなってしまうのだ.
もちろんこれまでにも様々な改善法は提案されており,例えばナノ構造を作るポリマーの化学結合をもっと強いものに置き換えるだとか,高強度の柱を立てておきそれで外部から近づいた物体を支え,本当の表面にある凹凸を守る,などが報告されている.しかしこれらは抜本的な解決になるほど強度が上がらなかったり,多少ましになっても生産性に難がある(量産しにくい,高価,等)など問題を抱えている.
今回著者らが報告しているのは,逆ピラミッド型の窪みを基板上に安価に作成し,そこにナノサイズの凹凸を作りこむことでナノ構造を保護しつつ高い量産性を確保する,というものである.

どういうものを作ったのかはこれはもう図を見たほうが早いので,Supplementary InformationのSupplementary Figure 4,5,7aと7b,10aを見ていただきたい.といってもまあ上で説明したまんまで,「ピラミッド状の型を作る → それをもとに『ピラミッド状に凹んだ表面』を作り,表面を撥水加工する」というだけの代物だ.なお,別にピラミッド型に限らなくてもよく,三角錐型やハニカム状の窪みを作っても同じようなことになる(Supplementary Figure 18).大まかなサイズとしては,ピラミッド状構造の一辺が100 μm程度となっていて,そこそこ大きいので作りやすそうである.
このようなピラミッド型の窪みをもった表面の作り方は何通りかあるが,例えばSiO2/Si基板にリソグラフィーで格子状にSiO2を残し化学的にエッチングするとピラミッド状の窪みができる.その上にポリマー原液をキャストして固め,ピラミッド状の突起のあるポリマーを作成.そいつを剥がして取り出し,今度はこのポリマーを鋳型としてセラミックの原料をキャスト,剥がしてセラミック部分を焼結すればピラミッド状の窪みがある薄膜が作れる.ポリマーを何度も再利用すれば同じ構造が何枚も作れるという寸法だ(Supplementary Figure 4と9).また別な手段として,円筒状のローラー表面にピラミッド状の突起を作りこんでおけば,こいつを基盤に押し付けながらゴロゴロ転がしていくだけでも同様なピラミッド状の窪みのある表面も作れる(Supplementary Figure 10).しかも転がして作るだけなので大面積化も余裕だし,緩やかな曲面にも転写できる.同様に,ピラミッド状の突起をもつSiやリン化ニッケルなどの硬い基板をハンコのように使い,金属表面やガラスにスタンプするだけでピラミッド状の窪みが量産可能である(Supplementary Figure 11,12).
ピラミッド状の窪みが出来たら,続いてナノ構造の作り込みだ.こちらも単純な手法で,基板表面に対しろうそくの煤を堆積させることでナノサイズの炭素粒子が積み重なる.それをテンプレートとしてシリカを堆積させ炭素を焼きだすとナノ構造のシリカで覆われた表面(ただしシリカなので親水性)となり,さらにその表面にフッ素修飾した炭素鎖を結合すると超撥水の表面の完成となる(Supplementary Figure 14).
このようにして作成した表面は,まずそのままの状態で接触角150度以上の超撥水性を示した.

続いて最も大事な耐久試験である.こちらも動画を見ていただくのが手っ取り早いだろう.
まず通常の(一般的な)超撥水表面を剃刀の刃でゴリゴリとこすると,表面構造が破壊されあっという間に超撥水性はなくなってしまう(41586_2020_2331_MOESM2_ESM.mov).
ところがこれに対し,今回著者らが作成した表面は,剃刀の刃で縦横にゴリゴリと削り,さらにドライバーでこすり,金だわしでこすり,サンドペーパーで削り,柔軟なプラスチックのへらでこすっても撥水性が維持されている.これは平面状のSi基板でも,曲面上のセラミック基板でも同様である(41586_2020_2331_MOESM3_ESM.mov).
※そこまでやらんでも,という気もするが,まあ,説得力はある.

ゴリゴリやる前と後とで,接触角的には数度程度しか劣化が見られない.これは,ゴリゴリとこすっても,少しずつ削れているのは鎧として保護に役立つ「壁面」部分であり,液体との接触の大部分を担う「窪み」の部分にはほとんどダメージが行かないことに由来する.
こする前後での落下した水滴の跳ね具合などを見ても(41586_2020_2331_MOESM5_ESM.mov),ダメージが少なそうなことは見て取れる.
さらに長時間のスクラッチにも耐えるかの試験として,プラスチック片をゴリゴリとこすり続けてみたところ,1000回ほどこすってもまだ接触角は150度程度を維持していた.
さらに,強烈な水流(10気圧ぐらいの圧力で,128 mlの水を0.8秒で放出.およそ32.6 m/sの速度らしい)を表面にぶち当てる,という実験でも(41586_2020_2331_MOESM7_ESM.mov),既存のコーティング法で作った表面は撥水性が落ちているのに対し,今回の手法で作成した表面は十分な撥水性を維持している.
前述の通り,この手法はガラスの表面にも適用できる.ガラス板にこの手法を適用し,うっすらと曇ったぐらいの透明度のガラスを作り,剃刀やプラスチック片でこすっても十分な撥水性が維持される様子が動画として公開されている(41586_2020_2331_MOESM8_ESM.mov).

超撥水表面は結構弱いのが常識だったのだが,思った以上に強いものが作れるものである.(2020.6.9)